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Outlining the probability that hemizygosity of specific genomic regions are causal of some of the 

clinical features reported in del(1q) patients. 

In order to computationally inferring the genomic segments being most likely associated with 

selected clinical features, we assumed that a specific trait was predominantly the outcome of the 

hemizygosity of specific disease locus (DL), either a protein-coding gene or a putative regulatory 

element, rather than the synergistic effect of the haploinsufficiency of several genomic elements. 

This probability essentially depends on the penetrance of the DL and on the causative and non-

causative deletions that overlap the genomic position and may be estimated by evaluating the 

probability for the experimental data to occur assuming that the DL intersects a given genomic 

location and the same probability assuming that the DL maps elsewhere in the SRO. 

1) Identification of the smallest regions of overlap 

At this purpose, we assigned at each i patient having the trait the function Yi of the position x along 

the genomic segment under study: 
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For i = 1,2,3..N 

and for patients not associated with the trait, the function  
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  c =  most proximal boundary among the deletions 

  d = most distal boundary among the deletions 
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We then identified the deletion of minimal length y
1
(x), y

1
(x)=1 in (ai, bi) , li= minimal length, and 

looked for the first element in Y, let’s call it   yμ(x), yμ(x)=1 in (aj, bj),  non-overlapping the region 

(ai, bi) :                                                       ),), jjii
baba ((   

Both regions (ai, bi) e (aj, bj) will have probability 1 to include a DL  
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We then proceeded iteratively to identify any other possible region (ak, bk) satisfying: 
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Let ν represents the total number of (a,b) genomic segments (primary peaks)  identified. 

 ν = total number of non-overlapping regions having probability 1 to include a DL 

This set of genomic segments (primary peaks) will be then ordered according to their genomic 

locations : 
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 Each peak corresponds to a genomic segment with probability 1 containing a DL, however this 

region may be further refined taking into account its potential overlaps with other causative 

deletions provided that these latter do not intercept other peaks. 

Given the generic peak i (ai, bi) having length li,  we identify, if any, the deletions yk
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The peak region becomes (a’i , b’i):  
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will determine the split of the peak into two peaks (Fig. 1).  
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Fig. 1 Dark bars represent deletions associated with the trait. A) Secondary peaks are defined by the 

overlaps of causative deletions within the region of the primary peaks. Note that the deletion 

marked by the asterisk does not partecipate in defining the secondary peak as the DL may lie in its 

overlap with the second peak. B) The two deletions do not overlap, splitting the primary peak into 

two secondary peaks.  

Each secondary peak will have probability 1 to include a DL. 

 

2) Probability distribution inside the peaks 

Up to this point, the procedure reflects the usual approach in order to identify the shortest regions of 

overlap in contiguous gene syndromes i.e. the graphical identification of the area of minimal 

overlap between deletions in patients sharing the same phenotype.  

2.1) Introducing the Δ interval   

In order to calculate this probability distribution, we scanned the genomic regions inside the peaks 

using a non-overlapping sliding window Δ=1 kb; each peak region (ai, bi) will be subdivided into 

li/Δ intervals having boundaries : 
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Each window Δim will have an individual probability to overlap the DL which depends on the 

penetrance of the DL and on the numberS  of causative and S  non-causative deletions overlapping 

Δim: 
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2.2) Baysian approach to estimate the posterior probability 

The individual probability for each interval Δim inside the peaks to overlap the DL, will be 

estimated using the bayesian approach: 
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Where:  

Event A=the  interval Δim overlaps the disease locus 

Event B=the set of deletions overlapping  Δim (observed experimental data) 

P(A/B)= the posterior probability of event A occurring given that event B is true (i.e. has 

occurred), this probability is the probability we would like to estimate 

P(A) = the a priori probability for the DL to overlap Δim . 

P(B/A): The conditional probability for the data to be observed, given that the interval Δim 

overlaps the disease locus.  

P(B): The sum of probabilities of the events that can generate the event B (i.e. normalization factor)                 

   

2.3 Defining the term of the probability equation 

   

2.3.1 Introducing the term P(A) 

P(A), the a priori probability for the DL to overlap Δim, depends on the size of Δ and on the length 

of the peak:  

the peaklength of l
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 2.3.2 introducing the term P(B/A) and penetrance 

The probability of the event B occurring depends on the number of causative and non causative 

deletions and on the penetrance of the DL, through the binomial probability distribution: 
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As the real penetrance of DL is unknown, we consider the best estimator for t as the value (0 ≤t≤1) 

which maximizes P(B/A). By differentiating P(B/A) with respect to t and setting the derivative 

function to zero we obtained : 
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2.3.3  Introducing the term P(B)  

Event B may occur in two distinct ways:  

1) DL overlaps Δim : its contribution to P(B) will be: 
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2) DL does not overlap Δim ( event not A=  ): the contribution to P(B) will be: 
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P (B) will be the sum of probabilities in 1) and in 2): 
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And by substituting in (1), P(A/B) becomes : 
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     (1) 

 

We have now to calculate the term )/( ABP , i.e. the probability 
 
of event B occurring given that the 

DL does not overlap Δim. 

2.3.3.1 Introducing the term )/( ABP  

At this regard, let’s consider a deletion from a patient showing the trait (causative deletion) and 

overlapping a peak, we may distinguish two different cases:  

a) The generic deletion yp does not overlap other DL peaks (thus, by definition, it should 

encompass the whole peak); given that Δim does not overlap the DL ( event not A=  ), this 
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latter  is included within the deletion with  probability 1-P(A) (fig. 2A) and the probability to 

observe such a deletion will be:  
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b) The generic deletion yp overlaps another (adjacent) peak . This deletion may belong to a  

patient showing the trait either because (1) the DL maps into the overlap between the first 

peak and the deletion, or (2) into the overlap with the second peak or (3) two distinct DLs 

are present in both overlaps (Fig 2B). 

Let  li be the length of the first peak , li+1 the length of the contiguous peak, and Vip , Vi+1,p as  

defined by the following equations: 
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The overall probability for yp occurring, given the event Ā is the sum of the probabilities (1),(2),(3)  
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It should be noted that for Vi+1,p = 0 ( and then Vi,p = 1), the last expression equals the expression in 

(a)  
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Fig. 2 Dark bars represent causative deletions. A) The deletion yp does not overlap other peaks and 

B) the deletion overlaps the adjacent peak 2. The probabilities associated with overlaps between the 

deletion and the peak(s) are graphically represented. 

 

Let’s now consider deletions which are not associated with the trait. A generic deletion     may 

show no association with the trait either because (1) it does not overlap the DL, or (2) because, 

while encompassing the DL, the carrier patient does not show the trait due to the incomplete 

penetrance. We have also to distinguish the situations a) (fig 3A) and b) (fig 3B).  
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a) The generic deletion yp  does not overlap another peak (fig. 3A) 
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The overall probability for  
 
 occurring, given the event Ā is the sum of the probabilities (1),(2)  
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b) The generic deletion   
 
 overlaps a second peak: (fig. 3B)  
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The overall probability for  
 
 occurring, given the event Ā is the sum of the probabilities 

(1),(2),(3),(4) 
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It should be noted that for V i+1,p  = 0, the expression in (b) equals the expression in (a’)  

 

 

Fig. 3 Dark and white bars represent causative and non causative deletions, respectively. A) The 

deletion  
 
  does not overlap other peaks and B) the deletion overlaps the adjacent peak 2. The 

probabilities associated with overlaps between the non causative deletion and the peak(s) are 

graphically represented.   
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Let  Pi =        for i =1,2,…,n-k and Pj=      
 
      for j =n-k+1,…,n  

Since P1,P2,.., Pn  , the individual probabilities for each of the  n deletions  to be associated with the 

trait under the condition A  , are unlinked, one can’t use the binomial coefficient as usual. 

Let     
  be the sum of all the products arising from the subsets of  n-h distinct elements from 
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Finally, given n-k (number of associated deletions) and k (number of non-associated deletions) the 

probability )/( ABP   , becomes: 
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Example, for n=4 and k=3, (3) becomes: 
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Since the exact calculation of the term )/( ABP   becomes infeasible as n and k increase, we estimated 

)/( ABP  using a Monte Carlo procedure simulating 10
7
 probability-weighted combinations and 

counting as successfully events those having n-k associated deletions. Random numbers for 

probability-weighted combinations were generated using the Mersenne Twister algorithm . 

 

We can now substitute in equation (1)  
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 the terms     ,        ,     , and        to calculate the final probability for each Δ within a 

specific peak. 

 

The resulting probabilities PΔ(A/B) along  each peak were then normalized to 1.  

The Visual Basic programming language and Excel 2007 (both from Microsoft Corporation) were 

respectively used to write the program and to build UCSC custom tracks (bed and bed-graph files).  

In order to improve visualization at extreme probabilities values, the transformation function y= 

log(P(x)) + 1 - min(log(P(x))), has been applied to the probability function P(x) in the  Log_scale 

track. 

 


